Andrew F. Parsons

REYNOTES IN Organic Chemistry

SECOND EDITION

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry

Second Edition

ANDREW F. PARSONS Department of Chemistry, University of York, UK

WILEY

This edition first published 2014

© 2014 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Parsons, A. F.
Keynotes in organic chemistry / Andrew Parsons Second edition.
pages cm.
Includes bibliographical references and index.
ISBN 978-1-119-99915-7 (hardback) – ISBN 978-1-119-99914-0 (paperback) 1.
Chemistry, Organic-Outlines, syllabi, etc. I. Title.
QD256.5.P35 2014
547-dc23 2013024694

A catalogue record for this book is available from the British Library.

HB ISBN: 9781119999157 PB ISBN: 9781119999140

Set in 10/12pt Times by Thomson Digital, Noida, India.

1 2014

Contents

Prej	face		xi
1	Structu	re and bonding	1
		nic versus covalent bonds	1
	1.2 Tł	ne octet rule	2
		ormal charge	2
	1.4 Si	gma (σ -) and pi (π -) bonds	3
		ybridisation	4
	1.6 In	ductive effects, hyperconjugation and mesomeric effects	6
		6.1 Inductive effects	6
		6.2 Hyperconjugation	7
		6.3 Mesomeric effects	7
		cidity and basicity	9
		7.1 Acids	9
		7.2 Bases	12
		7.3 Lewis acids and bases	15
		7.4 Basicity and hybridisation	15
		7.5 Acidity and aromaticity	16
		7.6 Acid-base reactions	16
		example	17
	Problem	18	18
2	Functio	nal groups, nomenclature and drawing organic compounds	21
	2.1 Fu	inctional groups	21
	2.2 A	lkyl and aryl groups	22
		lkyl substitution	23
	2.4 Na	aming carbon chains	23
	2.4	4.1 Special cases	25
		rawing organic structures	27
		example	28
	Problem	IS	29
3	Stereocl	hemistry	31
	3.1 Iso	31	
		onformational isomers	32
		2.1 Conformations of ethane (CH_3CH_3)	32
	3.	2.2 Conformations of butane $(CH_3CH_2CH_2CH_3)$	33
	3.	2.3 Conformations of cycloalkanes	34
		·	

		3.2.4	Cyclohexane	35
	3.3	Configu	urational isomers	37
		3.3.1	Alkenes	37
		3.3.2	Isomers with chiral centres	38
	Work	ed exam	ple	44
	Prob		•	45
4	Deer	tivity or	d mashanian	49
4	4 .1		nd mechanism re intermediates: ions versus radicals	49 49
	4.1		philes and electrophiles	49 51
	4.2		Relative strength	52
	4.3		ations, carbanions and carbon radicals	53
	4.3	4.3.1		53 54
	4.4	4.5.1 Steric e	Order of stability	55
			ion levels	55
	4.6		l types of reaction	56
			Polar reactions (involving ionic intermediates) Radical reactions	56
				58
	47		Pericyclic reactions rsus radicals	59
				59
			on selectivity	60
	4.9		on thermodynamics and kinetics	60
			Thermodynamics Vinction	60
			Kinetics	62
	4 10		Kinetic versus thermodynamic control	65
			overlap and energy	65
			nes for drawing reaction mechanisms	67
		ed exam	iple	68
	Prob	ems		69
5	Halo	genoalk	anes	73
	5.1	Structur	re	73
	5.2	Prepara	ution	74
		5.2.1	Halogenation of alkanes	74
		5.2.2	Halogenation of alcohols	75
		5.2.3	Halogenation of alkenes	77
	5.3	Reactio	ons	78
		5.3.1	Nucleophilic substitution	78
		5.3.2	Elimination	84
		5.3.3	Substitution versus elimination	89
	Work	ed exam	nple	91
	Prob	ems		92
6	Alke	nes and	alkynes	95
-	6.1	Structur		95
	6.2	Alkene		97

		6.2.1	Preparation	97
		6.2.2	Reactions	98
	6.3	Alkyne	es	110
		6.3.1	Preparation	110
		6.3.2	Reactions	110
	Work	ed exan	nple	113
	Probl	lems		114
7	Benz	enes		117
	7.1	Structu	re	117
	7.2	Reactio	ons	119
		7.2.1	Halogenation	119
		7.2.2	Nitration	120
		7.2.3	Sulfonation	120
		7.2.4	Alkylation: The Friedel-Crafts alkylation	121
		7.2.5	Acylation: The Friedel-Crafts acylation	122
	7.3	Reactiv	vity of substituted benzenes	123
		7.3.1	Reactivity of benzene rings: Activating	
			and deactivating substituents	124
		7.3.2	Orientation of reactions	125
	7.4		philic aromatic substitution (the S _N Ar mechanism)	127
	7.5		rmation of benzyne	128
	7.6		ormation of side chains	129
	7.7		ion of the benzene ring	132
	7.8		nthesis of substituted benzenes	132
	7.9		philic substitution of naphthalene	135
			philic substitution of pyridine	135
	7.11		philic substitution of pyrrole, furan and thiophene	136
		ed exan	nple	136
	Probl	lems		137
8	Carb	onyl co	mpounds: aldehydes and ketones	139
	8.1	Structu		139
	8.2	Reactiv	•	140
	8.3		philic addition reactions	142
			Relative reactivity of aldehydes and ketones	142
			Types of nucleophiles	142
		8.3.3	Nucleophilic addition of hydride: reduction	143
		8.3.4	Nucleophilic addition of carbon nucleophiles:	
			formation of C–C bonds	146
		8.3.5	Nucleophilic addition of oxygen nucleophiles:	1.40
		0.2.5	formation of hydrates and acetals	149
		8.3.6	Nucleophilic addition of sulfur nucleophiles:	1 ~ 1
		027	formation of thioacetals	151
		8.3.7	Nucleophilic addition of amine nucleophiles: formation of imines and enamines	152
			iormation of minnes and enamines	132

	8.4	α-Subs	titution reactions	156
		8.4.1	Keto-enol tautomerism	156
		8.4.2	Reactivity of enols	157
		8.4.3	Acidity of α -hydrogen atoms: enolate ion formation	157
		8.4.4	Reactivity of enolates	158
	8.5	Carbon	yl-carbonyl condensation reactions	160
		8.5.1	Condensations of aldehydes and ketones:	
			the aldol condensation reaction	160
		8.5.2	Crossed or mixed aldol condensations	161
		8.5.3		162
		8.5.4	The Michael reaction	163
		ked exam	ıple	164
	Prob	lems		165
9	Carl	onyl co	mpounds: carboxylic acids and derivatives	167
	9.1	Structu		167
	9.2	Reactiv	•	168
	9.3		philic acyl substitution reactions	168
		9.3.1	Relative reactivity of carboxylic acid derivatives	168
		9.3.2	Reactivity of carboxylic acid derivatives	
			versus carboxylic acids	169
		9.3.3	Reactivity of carboxylic acid derivatives	
	o (versus aldehydes/ketones	169
	9.4		philic substitution reactions of carboxylic acids	170
		9.4.1	Preparation of acid chlorides	170
	0.5	9.4.2	Preparation of esters (esterification)	170
	9.5		philic substitution reactions of acid chlorides	171
	9.6 9.7		philic substitution reactions of acid anhydrides	172 173
	9.7 9.8		philic substitution reactions of esters philic substitution and reduction reactions of amides	175
	9.8 9.9		philic addition reactions of nitriles	175
	9.10		titution reactions of carboxylic acids	178
	9.11		yl-carbonyl condensation reactions	178
	<i>J</i> .11	9.11.1	The Claisen condensation reaction	178
		9.11.2	Crossed or mixed Claisen condensations	179
		9.11.3	Intramolecular Claisen condensations:	117
		,	the Dieckmann reaction	180
	9.12	A sumr	nary of carbonyl reactivity	181
		ked exam		182
	Prob			183
10	Spec	troscopy	v	185
10	_		pectrometry (MS)	185
	1.0.1	10.1.1	Introduction	185
		10.1.2	Isotope patterns	187
		10.1.3	1 1	188

227

229 231

235

241 249

251

277

		10.1.4 Fragmentation patterns	188
		10.1.5 Chemical ionisation (CI)	189
	10.2	The electromagnetic spectrum	189
	10.3	Ultraviolet (UV) spectroscopy	190
	10.4	Infrared (IR) spectroscopy	192
	10.5	Nuclear magnetic resonance (NMR) spectroscopy	194
		10.5.1 ¹ H NMR spectroscopy	197
		10.5.2 ¹³ C NMR spectroscopy	202
	Work	ted example	203
	Probl	ems	205
11	Natu	ral products and synthetic polymers	207
	11.1	Carbohydrates	207
	11.2	Lipids	209
		11.2.1 Waxes, fats and oils	209
		11.2.2 Steroids	210
	11.3	Amino acids, peptides and proteins	211
	11.4	Nucleic acids	213
	11.5	Synthetic polymers	214
		11.5.1 Addition polymers	215
		11.5.2 Condensation polymers	217
	Work	ted example	218
	Probl	ems	219
App	endix	1: Bond dissociation enthalpies	221
App	endix	2: Bond lengths	223
App	endix	3: Approximate pK_a values (relative to water)	225

Appendix 4: Useful abbreviations

Appendix 5: Infrared absorptions

Appendix 7: Reaction summaries

Appendix 8: Glossary

Further reading

Outline answers

Index

Appendix 6: Approximate NMR chemical shifts

Preface

With the advent of modularisation and an ever-increasing number of examinations, there is a growing need for concise revision notes that encapsulate the key points of a subject in a meaningful fashion. This keynote revision guide provides concise organic chemistry notes for first year students studying chemistry and related courses (including biochemistry) in the UK. The text will also be appropriate for students on similar courses in other countries.

An emphasis is placed on presenting the material pictorially (pictures speak louder than words); hence, there are relatively few paragraphs of text but numerous diagrams. These are annotated with key phrases that summarise important concepts/key information and bullet points are included to concisely highlight key principles and definitions.

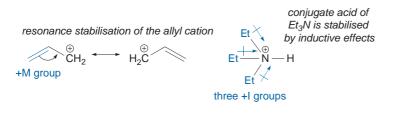
The material is organised to provide a structured programme of revision. Fundamental concepts, such as structure and bonding, functional group identification and stereochemistry are introduced in the first three chapters. An important chapter on reactivity and mechanism is included to provide a short overview of the basic principles of organic reactions. The aim here is to provide the reader with a summary of the 'key tools' which are necessary for understanding the following chapters and an important emphasis is placed on organisation of material based on reaction mechanism. Thus, an overview of general reaction pathways/mechanisms (such as substitution and addition) is included and these mechanisms are revisited in more detail in the following chapters. Chapters 5–10 are treated essentially as 'case studies', reviewing the chemistry of the most important functional groups. Halogenoalkanes are discussed first and as these compounds undergo elimination reactions this is followed by the (electrophilic addition) reactions of alkenes and alkynes. This leads on to the contrasting (electrophilic substitution) reactivity of benzene and derivatives in Chapter 7, while the rich chemistry of carbonyl compounds is divided into Chapters 8 and 9. This division is made on the basis of the different reactivity (addition versus substitution) of aldehydes/ketones and carboxylic acid derivatives to nucleophiles. A chapter is included to revise the importance of spectroscopy in structure elucidation and, finally, the structure and reactivity of a number of important natural products and synthetic polymers is highlighted in Chapter 11. Worked examples and questions are included at the end of each chapter to test the reader's understanding, and outline answers are provided for all of the questions. Tables of useful physical data, reaction summaries and a glossary are included in appendices at the back of the book.

New to this edition

A number of additions have been made to this edition to reflect the feedback from students and lecturers:

- A second colour is used to clarify some of the diagrams, particularly the mechanistic aspects
- Reference notes are added in the margin to help the reader find information and to emphasise links between different topics
- Diagrams are included in the introductory key point sections for each chapter
- Additional end-of-chapter problems (with outline answers) are included
- A worked example is included at the end of each chapter
- The information in the appendices has been expanded, including reaction summaries and a glossary

Acknowledgements


There are numerous people I would like to thank for their help with this project. This includes many students and colleagues at York. Their constructive comments were invaluable. I would also like to thank my family for their support and patience throughout this project. Finally, I would like to thank Paul Deards and Sarah Tilley from Wiley, for all their help in progressing the second edition.

> Dr Andrew F. Parsons 2013

1

Structure and bonding

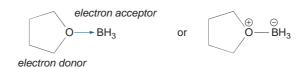
Key point. Organic chemistry is the study of carbon compounds. *Ionic* bonds involve elements gaining or losing electrons but the carbon atom is able to form four *covalent* bonds by sharing the four electrons in its outer shell. Single (C–C), double (C=C) or triple bonds (C≡C) to carbon are possible. When carbon is bonded to a different element, the electrons are not shared equally, as *electronegative* atoms (or groups) attract the electron density whereas *electropositive* atoms (or groups) repel the electron density. An understanding of the electron-withdrawing or -donating ability of atoms, or a group of atoms, can be used to predict whether an organic compound is a good *acid* or *base*.

1.1 Ionic versus covalent bonds

• *Ionic bonds* are formed between molecules with opposite charges. The negatively charged anion will electrostatically attract the positively charged cation. This is present in (inorganic) salts.

Cation[⊕] Internet Cation[⊕] Anion e.g. Na[⊕] Internet Cation[⊕] CI

• *Covalent bonds* are formed when a pair of electrons is shared between two atoms. A single line represents the two-electron bond.

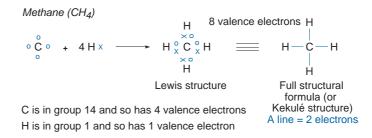

Atom — Atom e.g. CI — CI = $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & CI & 0 & CI & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Keynotes in Organic Chemistry, Second Edition. Andrew F. Parsons.

^{© 2014} John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

The cyclic ether is tetrahydrofuran (THF) and BH_3 is called borane (Section 6.2.2.5)

• *Coordinate (or dative) bonds* are formed when a pair of electrons is shared between two atoms. *One* atom donates both electrons and a single line or an arrow represents the two-electron bond.


 Hydrogen bonds are formed when the partially positive (δ+) hydrogen of one molecule interacts with the partially negative (δ-) heteroatom (e.g. oxygen or nitrogen) of another molecule.

Intramolecular hydrogen bonding in carbonyl compounds is discussed in Section 8.4.1

 $\begin{array}{cccc} \delta + & \delta - & \delta + & \delta - \\ \text{Molecule-Humme Heteroatom-Molecule} & \text{e.g.} & \text{HO} - \text{H} & \text{Hommer OH}_2 \end{array}$

1.2 The octet rule

To form organic compounds, the carbon atom shares electrons to give a stable 'full shell' electron configuration of eight valence electrons.

A single bond contains two electrons, a double bond contains four electrons and a triple bond contains six electrons. A lone (or non-bonding) pair of electrons is represented by two dots $(\cdot \cdot)$.

Carbon dioxide (CO2)Hydrogen cyanide (HCN)
$$\overset{\circ}{O}_{X}^{*}C_{X}^{*}C_{X}^{*}C_{X}^{*}N_{X}^{*} \equiv : O = C = O:$$
 $H_{X}^{*}C_{X}^{*}X_{X}^{*}N_{X}^{*} \equiv H - C \equiv N:$

1.3 Formal charge

Formal positive or negative charges are assigned to atoms, which have an apparent 'abnormal' number of bonds.

Methane is the smallest alkane – alkanes are a family of compounds that contain only C and H atoms linked by single bonds (Section 2.4)

Drawing organic compounds using full structural formulae and other conventions is discussed in Section 2.5

Atom(s)	С	N, P	0, S	F, Cl, Br, I
Group number	14	15	16	17
Normal number of 2 electron bonds	4	3	2	1
	up numb periodic table		nds – ur	mber of hshared – 10 ectrons

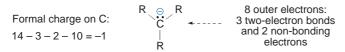
Example: Nitric acid (HNO₃)

Nitric acid is used in synthesis to nitrate aromatic compounds such as benzene (Section 7.2.2)

The stability of carbocations and

carbanions is discussed in

Carbanions are formed on


deprotonation of organic compounds. Deprotonation of a carbonyl compound, at the α -position, forms a carbanion called an enolate ion (Section 8.4.3)

Section 4.3

The nitrogen atom donates a pair of electrons to make this bond

Carbon forms four covalent bonds. When only three covalent bonds are present, the carbon atom can have either a formal negative charge or a formal positive charge.

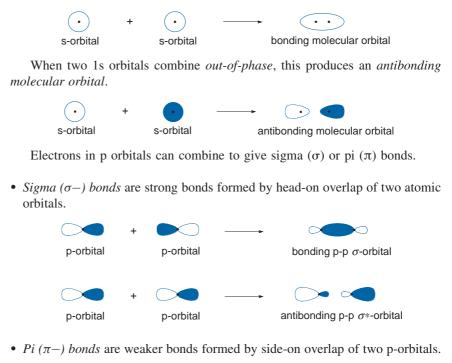
• Carbanions-three covalent bonds to carbon and a formal negative charge.

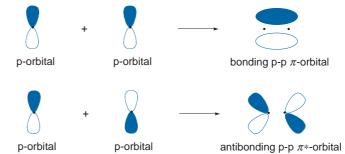
The negative charge is used to show the 2 non-bonding electrons

• Carbocations-three covalent bonds to carbon and a formal positive charge.

Formal charge on C: $R \xrightarrow{\oplus} R$ 6 outer electrons: 14 - 3 - 0 - 10 = +1 R

Carbocations are intermediates in a number of reactions, including $S_N 1$ reactions (Section 5.3.1.2)


The positive charge is used to show the absence of 2 electrons

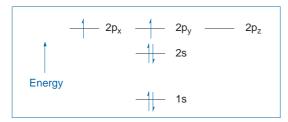

1.4 Sigma (σ -) and pi (π -) bonds

The electrons shared in a covalent bond result from overlap of atomic orbitals to give a new molecular orbital. Electrons in 1s and 2s orbitals combine to give sigma (σ -) bonds.

When two 1s orbitals combine *in-phase*, this produces a *bonding molecular orbital*.

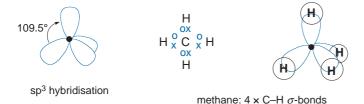
Molecular orbitals and chemical reactions are discussed in Section 4.10

Only σ - or π -bonds are present in organic compounds. All single bonds are σ -bonds while all multiple (double or triple) bonds are composed of one σ -bond and one or two π -bonds.

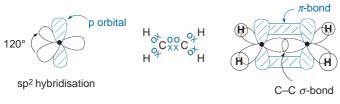

1.5 Hybridisation

- The ground-state electronic configuration of carbon is $1s^22s^22p_x^{-1}2p_y^{-1}$.
- The six electrons fill up lower energy orbitals before entering higher energy orbitals (Aufbau principle).
- Each orbital is allowed a maximum of two electrons (Pauli exclusion principle).
- The two 2p electrons occupy separate orbitals before pairing up (Hund's rule).

Alkenes have a C=C bond containing one strong σ -bond and one weaker π -bond (Section 6.1)


All carbonyl compounds have a C=O bond, which contains one strong σ -bond and one weaker π -bond (Section 8.1)

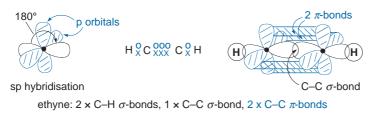
Hund's rule states that when filling up a set of orbitals of the same energy, electrons are added with parallel spins to different orbitals rather than pairing two electrons in one orbital



The carbon atom can mix the 2s and 2p atomic orbitals to form four new hybrid orbitals in a process known as *hybridisation*.

• sp^3 Hybridisation. For four single σ -bonds – carbon is sp^3 hybridised (e.g. in methane, CH₄). The orbitals move as far apart as possible, and the lobes point to the corners of a tetrahedron (109.5° bond angle).

• sp^2 Hybridisation. For three single σ -bonds and one π -bond – the π -bond requires one p-orbital, and hence the carbon is sp^2 hybridised (e.g. in ethene, $H_2C=CH_2$). The three sp^2 -orbitals point to the corners of a triangle (120° bond angle), and the remaining p-orbital is perpendicular to the sp^2 plane.



ethene: $4 \times C-H \sigma$ -bonds, $1 \times C-C \sigma$ -bond, $1 \times C-C \pi$ -bond

Alkenes have a C=C bond containing one strong σ -bond and one weaker π -bond (Section 6.1)

All carbonyl compounds have a C=O bond, which contains one strong σ -bond and one weaker π -bond (Section 8.1)

sp Hybridisation. For two single σ-bonds and two π-bonds – the two π-bonds require two p-orbitals, and hence the carbon is sp hybridised (e.g. in ethyne, HC≡CH). The two sp-orbitals point in the opposite directions (180° bond angle), and the two p-orbitals are perpendicular to the sp plane.

Alkynes have a C \equiv C bond containing one strong σ -bond and two weaker π -bonds (Section 6.1)